Motor accionado

Motor accionado

Blogroll

About

Blogger templates

miércoles, 6 de julio de 2016

Leyendo la placa característica II

Continuaremos con la lectura correcta de los parámetros que integran la placa característica de un motor eléctrico...


VOLTAJE NOMINAL

Es el nivel de tensión para el cual fue diseñado la máquina eléctrica para sus óptimas condiciones de trabajo. Para motores monofásicos es habitual encontrar voltajes nominales como 115/220 V, mientras que para motores trifásicos pueden existir distintos niveles, los mas comunes son 208/440 V.
Nota: Se recomienda que el nivel de tensión a ser aplicado sea de ±5%.

Por ejemplo si la placa característica indica que el voltaje nominal es de 120 V, entonces los niveles de tensiones recomendables para aplicarse al motor son:
Entre 120-(5*120)/100 V y 120+(5*120)/100 V
Sistema trifásico desbalanceado.
         120-6 V y 120+6 V
         114 V y 126 V    
Fuera del rango de estos valores no es recomendable

Otra consideración importante es el desbalance de tensiones que pueda haber entre fases de un motor trifásico, ya que esto puede ocasionar incrementos peligrosos en las temperaturas del motor ocasionando el degradamiento del aislante de los devanados. Existe una manera de realizar el cálculo de ese incremento de temperatura el cual se explicara a través de un ejemplo. Supongase que se tiene un sistema que alimenta un motor trifásico tal como el de la figura, si se desea conocer el incremento de temperatura se procede de la siguiente forma:
  1. Se calcula la tensión promedio. (248 V + 230 V + 236 V)/3 = 714/3 V = 238 V
  2. Se resta la tensión promedio del valor mayor de desbalance. 248 V - 238 V = 10 V
  3. Se calcula el porcentaje de tensión que equivale el valor anterior, con respecto a la tensión promedio. 10*100/238 V = 4.2 %
  4. Se encuentra el incremento de temperatura en el devanado a través de la siguiente formula "2*(%)²". 2*4.2 ² = 35.28 %
  5. Finalmente se agrega el porcentaje adicional de temperatura con el que va trabajar. Cuando calculamos la temperatura de trabajo en el apartado anterior de leyendo la placa característica se obtuvo un valor de 100 °C, si se toma en cuenta ahora este factor, el nuevo valor de temperatura de trabajo sería 100 °C*135.28% = 135.28 °C 
CORRIENTE NOMINAL

Viene dado por el fabricante y aparece en la placa característica del motor. En la siguiente gráfica se muestran los valores de corrientes normalmente manejados a nivel industrial y que son de interés para los motores eléctricos.
Nota: Existen métodos a través de los cuales poder calcular este parámetro.

CORRIENTE DE ARRANQUE

Normalmente se especifica en las placas características, y es la corriente que absorbe inicialmente el motor al iniciar la marcha, esta puede llegar a tener el un valor n veces mayor que la corriente nominal. De este valor depende el ajuste de las protecciones principales del motor de lo contrario podría dispararse accidentalmente. El cálculo técnico de este es Iarranque = Inominal * 6, pero si se quiere ser mas estricto con este valor se puede optar por aplicar una ecuación mas precisa:
Iarranque = (Hp * LC *1000) / (√3 * V). De esta ecuación se desprende otro parámetro que suele presentarse en las placas características que veremos a continuación.

LETRA CÓDIGO

Este parámetro es un dato del fabricante, para poder realizar un cálculo estimado de la corriente de arranque mínima y máximo que se presenta en el motor al iniciar la marcha. Su valor se encuentra tabulado de la siguiente forma.

LETRA          VALOR (KVA/Hp)                         LETRA           VALOR (KVA/Hp)                     
    A                      0               3.14                                L               9.00                9.99
    B                 3.15               3.54                                M              10.0               11.19
    C                 3.55              3.99                                 N              11.20             12.49
    D                 4.00              4.49                                 P              12.50             13.99
    E                 4.50               4.99                                R             14.00               15.99
    F                 5.00               5.59                                S             16.00               17.99
    G                 5.60               6.29                                T             18.00              19.99
    H                 6.30               7.09                                U              20.00              22.39
    J                  7.10               7.99                                V             22.40                   -    
    K                 8.00               8.99                                                                                

CORRIENTE DE SOBRECARGA

Los fabricantes de motores los diseñan, de forma que permitan soportar sobrecargas por un determinado tiempo. A pesar de que este parámetro no se indica en las placas características es interesante, ya que se deriva del valor del Service Factor visto en el otro apartado, se calcula como sigue. Isobrecarga = SF * Inominal.

FRECUENCIA

Establece la frecuencia eléctrica normal establecida por la NEMA, y su unidad es el hercio (Hz). En America corresponde a 60 Hz, en cambio en Europa es de 50 Hz. a través de la frecuencia y el número de polos del motor es posible calcular la velocidad nominal. Velocidad (rpm) = (frecuencia * 120) / (# polos)

FRAME

Es una cifra establecida por la norma NEMA para estandarizar las dimensiones físicas de los motores en general sin importar el tipo de fabricante, es decir, el diámetro del eje, distribución de los tornillos en la base, diposición de montaje, etc.
Por ejemplo supongamos que queremos tomar algunas características físicas de un motor que se desea sustituir por otro cuyo Frame es 143T, entonces nos apoyamos en un catálogo que contenga estas especificaciones. Por cierto, estas vienen dadas en pulgadas:
D: Altura del eje. Este valor puede calcularse como (primeros 2 dígitos del Frame) / 4
E: Distancia del centro del eje al hueco del anclaje lateral.
2F: Distancia entre los huecos laterales de anclaje.
H: Diametro de los hoyos de los anclajes.
U: Diametro del eje (Shaft).
BA: Distancia de la tapa al eje central
V: Largo del eje útil.
Key (cuña): Hay 3 valores los cuales son profundidad (Width),
                   espesor (Thickness) y lengh (Largo)
C: Sería el largo total del motor.
Otra particularidad es la letra S que pueden encontrar en algunos Frames por ejemplo 286T y 286TS, la diferencia radica en el eje (shaft), por ende la letra S del inglés Short (corto), indica que el eje útil sera más pequeño y en consecuencia también lo seran los valores asociados a este (U, V, Key).


EFICIENCIA

Es evidente que en todo proceso de conversión de energía siempre existan pérdidas, para el caso de los motores eléctricos estas vienen representadas por pérdidas mecánicas (roce de las rolineras, resistencia de la carga acoplada al eje), y eléctricas, de ahí surge el concepto de eficiencia como la potencia útil que realmente se esta entregando al sistema. Se representa normalmente como un porcentaje de la potencia absorbida.

FACTOR DE POTENCIA

Es la relación exitente entre la potencia en Watts y Vars que absorbe la máquina eléctrica, y esta influye directamente en la potencia eléctrica del motor.

POTENCIA NOMINAL

Este parámetro generalmente viene expresado en cv, hp ó Watts (potencia útil en el eje), para establecer la conversión entre estos se aplica la siguiente relación:

1 hp (Horse Power)       --> 746 Watts
1 cv (Caballo de Vapor) --> 736 Watts
1 kW                              --> 1000 Watts

A manera de ejemplo supongase que se quiere calcular la potencia en hp para un motor trifásico, conectado en 230 V, con una corriente nominal de 64 A, un service factor de 1,15, una eficiencia del 87%, factor de potencia de 0,87 at, letra código F. Determinar además el relé térmico a instalar, corriente de arranque.

Potencia en hp
P = √3 * V * I * Eff * Fp   (para motores trifásicos)
P = √3 * 230 * 64 * 0,87 * 0,87 = 19274,9 Watts
743        Watts ------ 1 hp
19274,9 Watts ------  x
x = 25,9 hp

Ajuste del relé térmico
Iol = I * SF = 64 * 1,15 = 73,6 A 

Corriente de arranque
método 1
Iarranq = I * 6 = 64 * 6 = 384A  

método 2 
Iarranq = (25,9 * 5,59*1000) / (√3 * 230) = 363,43 A

viernes, 1 de julio de 2016

Introducción al Mantenimiento I

Cualquier máquina eléctrica se encuentra ligada a un determinado mantenimiento que vendrá dado por su criticidad en el proceso, o mejor dicho el impacto a nivel operacional que cause dicha máquina, en los distintos niveles organizativos de la empresa, que pueden ser, productivos, administrativos, etc.


Fundamentos Básicos del Mantenimiento. Sandra L. y Sony Z. (2011)

El proceso evolutivo del matenimiento ha seguido una serie de etapas metodolólogicas que se han caracterizado por una metodología específica para cada una de ellas, de esta manera se puede encontrar a lo largo del tiempo 3 etapas por las cuales ha atravesado el mantenimiento, las cuales son:

FILOSOFIAS DEL MANTENIMIENTO

MPT (Mantenimiento Productivo Total)

Tiene sus origenes en el Japón, por Seiichi Nakajima, esta filosofía industrial combina los conceptos de calidad total en las técnicas de mantenimiento y a su vez involucra activamente a todo el personal de la empresa. Busca incrementar la productividad y las ganancias del negocio. Entre otros de sus objetivos se tienen:
  • Compromiso total por parte de los altos mandos de las empresa.
  • El personal debe tener la suficiente delegación de autoridad para implementar los cambios que se requieran.
  • Su implementación puede tomar incluso años.
  • Se debe crear un cambio en la mentalidad de las personas para hacerles entender sus responsabilidades.
Algo importante de esto es que el operador debe tomar parte activa en el proceso, es decir, romper con el paradigma de "yo nada mas opera la máquina". Los chequeos diarios, lubricación, así como reparaciones simples se convierten en parte del operador, y cuando se han necesarias reparaciones de mayor envergadura el departamento de mantenimiento se involucra.

MCC (Mantenimiento Centrado en Confiabilidad)

Data desde 1974 y fue desarrollado por la industria de Aviación de los Estados Unidos, considera que la función desempeñada por una máquina es lo que interesa desde el punto de vista productivo. Esto implica que no se debe buscar los equipos como si fueran nuevos, sino mantenerlos en condiciones suficientes para que estos realicen bien su función. Este tipo de mantenimiento se recomienda ser aplicado para:
  • Equipos o sistemas críticos para la producción o seguridad y ambiente.
  • Equipos o sistemas con altos costos de mantenimiento.
  • Sino existe confianza en el mantenimiento que se esta aplicando.
  • Equipos dinámicos (motores) que presentan una alta tasa de fallas, pero un bajo nivel de consecuencia.
Esta filosofía de mantenimiento asegura que se emprendan las acciones correctas de mantenimiento preventivo o predictivo, y elimina aquellas tareas que no producen ningún impacto en la frecuencia de fallas. El resultado de cada estudio del MCC del sistema de una máquina, es una lista de mantenimiento, programas y responsabilidades. Estas a su vez, dan por resultado una mejor disponibilidad, confiabilidad, eficacia, y rendimiento operativo.

MCM (Mantenimiento de Clase Mundial)

Es una nueva filosofía que pretende llenar el vacío del MPT y el del MCC. Los procesos entonces se abocan a la búsqueda de datos que les permita llegar lo más rápido posible a la implantación de esta nueva filosofía y encontrar soluciones a los problemas de mantenimiento. Entre sus características principales se mencionan algunas:

  • Hace énfasis en la obtención de los objetivos estrátegicos de los negocios a través del trabajo en equipo.
  • Da importancia al desarrollo de las competencias de las personas para el desempeño de los procesos.
  • Promueve el trabajo en un ambiente de mejoramiento continuo.
  • Promueve la relación continua mantenedor - operador.
  • Fomenta la eficacia y eficiencia de los procesos a través de una planificación organizada y disciplinada.
  • El mantenimiento debe ser visto como una organización con visión de negocio que sastiface a sus clientes y agrega valor a la empresa 
DEFINICIONES

Es necesario describir una serie de conceptos que van permitir un mejor entendimiento de las acciones de mantenimiento que normalmente se ejecutan.

MANTENIMIENTO RUTINARIO

Es aquel ejecutado por los operarios de las maquinarias, es decir tiene un basamento en la relación mantenedor - operador tal como se hablo en el MPT, realizandose actividades como lubricación, limpieza en general, ajustes de piezas, calibración y protección. Este mantenimiento se realiza con frecuencias cortas de ejecución desde diario hasta semanal. Su duración es menor de 30 minutos de la jornada diaria de trabajo.

MANTENIMIENTO PROGRAMADO

Este mantenimiento es el ejecutado por el departamento de mantenimiento, es decir, se requiere mano de obra calificada para poder ejecutarlo, se caracteriza por tener actividades de inspección, chequeos, monitoreos, cambios de piezas. Este se realiza con una frecuencia de quincenal en adelante, tales como: quincenal, mensual, trimestral, semestral, anual, bianual.

MANTENIMIENTO POR AVERÍA

La tendencia tradicional e innovadora también lo denominan correctivo, es ejecutado por el departamento de mantenimiento para lograr  el funcionamiento a corto plazo de los sistemas. Este tipo de mantenimiento no se programa en el tiempo debido ya que afecta negativamente la producción.

MANTENIMIENTO PREVENTIVO

Emplea el análisis estadístico de la data de acciones ejecutadas a los sistemas para determinar los parámetros de mantenimiento. Se basa en la determinación de parámetros básicos de mantenimiento referidos a tiempo entre fallas y tiempos de reparar, fundamentales para la determinación de la confiabilidad, la mantebilidad y disponibilidad.

MANTENIMIENTO PREDICTIVO

Es el mantenimiento planificado y programado basándose en el técnico de la condición de la máquina, antes de ocurrir una falla, sin detener el funcionamiento normal de la máquina, para determinar la expectativa de vida de los componentes y reemplazarlos en un tiempo óptimo, minimizando los costos.

ACTIVIDADES DE MANTENIMIENTO

ACTIVIDAD MECÁNICA

Son acciones de mantenimiento dirigidas la reparación y conservación de las partes mecánicas de las máquinas. Estas partes varían con respecto al sistema en sí, algunos pueden ser:
  • Motores
  • Rodamientos
  • Poleas 
  • Engranajes
  • Piñones 
 ACTIVIDAD ELÉCTRICA

Muchos sistemas en general poseen partes eléctricas las cuales son necesarias mantenerlas para obtener un desempeño óptimo. Algunos elementos de las partes eléctricas pueden ser:
  • Contactores.
  • Tableros eléctricos.
  • Motores.
  • Reductores de velocidad.
  • Fusibles.
 
ACTIVIDAD DE INSTRUMENTACIÓN

Son actividades donde se realizan funciones de calibración y control sobre objetos indicadores y medidores, entre algunos elementos se encuentran:
  • Manómetros.
  • Termocuplas.
  • Presostatos.
  • Termostatos.
ACTIVIDAD GENERAL

Son acciones de baja envergadura, muy sencillas de realizar en la cual no se requiere una mano de obra calificada, las actividades contenidas en esta pueden ir desde limpieza, verificación e inspección de elementos o sistemas.

Por último voy a publicar un formato en excel que permite describir los cargos de la mano de obra, basandose en sus funciones dentro del departamento de mantenimiento.
La hoja de cálculo ya posee las fórmulas hechas, solo deben cambiar las descripciones de los cargos según sus necesidades en la hoja de CARGOS y listo.

http://bit.ly/298Qgg5
http://bit.ly/298Qgg5
http://bit.ly/298Qgg5
http://bit.ly/298Qgg5
http://bit.ly/298Qgg5

Es importante conocer ciertos aspectos en general del mantenimiento a nivel industrial, así como conceptos y filosofías bajo las cuales las organizaciones se guían a la hora de conformar un departamento de mantenimiento, y las actividades o funciones que deben realizar la mano de obra perteneciente a una empresa.

 
Blogger Templates